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Convection of two-dimensional rolls in an infinite horizontal layer of fluid-saturated 
porous medium heated from below is studied numerically. Several important finite- 
amplitude states are isolated, and their bifurcation properties are shown, Effects of 
the temperature-dependent viscosity are included. The stability of these states is 
investigated with respect to the class of disturbances that have a t x  phase shift 
relative to the basic state. In particular, the oscillatory mechanism and the mean- 
flow generating mechanism through the variable viscosity are discussed. 

1. Introduction 
Thermal convection in a fluid-saturated porous medium has been a subject of 

fundamental interest in the stability of fluid flows. The reasons are: (i) It is 
dynamically simpler than other convective systems since the nonlinearity only 
appears in the advection of the temperature field. This feature is similar to that in 
Rayleigh-Bdnard convection at infinite Prandtl number. However, unlike the latter 
system, convection in the porous probelm is governed by a lower-order differential 
equation of motion, since the boundary condition only restricts the normal velocity 
component. (ii) The two-dimensional rolls in a porous medium have the same 
governing equations as the ordinary convection rolls in a Hele-Shaw apparatus 
(Saffman & Taylor 1958). These properties make the results of the two-dimensional 
porous-convection problem of physical significance, even in the region where the 
three-dimensional motions in fact predominate. The numerical two-dimensional 
studies in the porous rolls can provide direct comparisons with the Hele-Shaw 
experiments. (iii) The porous rolls have been found to exhibit two-dimensional 
oscillations (Combarnous & Le Fur 1969; Horne & O’Sullivan 1974, 1978; Schubert 
& Straus 1982 ; Kimura, Schubert & Straus 1986 ; Aidun & Steen 1987 ; and Steen & 
Aidun 1988). The two-dimensional problem provides a relatively simple example in 
studies of the transition to turbulence in pattern forming systems. In  contrast, the 
analogous oscillatory instabilities have not been observed in the two-dimensional 
numerical solutions of ordinary convection, even for a Rayleigh number up to as high 
as 25 times above the critical onset. 

In all the porous-convection studies cited above, the investigators focused on a 
unicellular pattern in a square cross-section. The numerical analyses are two- 
dimensional. Since the sidewalls are insulated and no derivatives of the velocity field 
are restricted, the unicellular patter satisfies the conditions required for periodically 
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continuing the pattern to an infinite extent. For the basic finite-amplitude solution, 
the unicellular problem in a square section is identical to that in an infinite layer with 
the wavenumber prescribed at the critical onset value. Restricted by the sidewalls, 
the instabilities, however, can only correspond to a restricted class of in-phase 
disturbances. For a infinite-periodic system, the instabilities can have the freedom of 
a in phase shift relative to the basic state. 

In this paper, we consider the porous-medium convection in an infinite horizontal 
layer of fluid. The main features of this study are: (i) the temperature dependent 
viscosity is included ; (ii) several finite-amplitude equilibria, other than the basic 
solutions, are identified and their bifurcation structures are studied ; (iii) the stability 
analysis of the steady solution with respect to the in phase-shifted disturbances. 

Of particular importance are the class of oscillatory instabilities and the 
instabilities with a non-vanishing mean vorticity component. The latter instabilities 
show the tendency of driving a mean flow through the viscosity gradient. The 
oscillatory instabilities appear to be an interesting feature for the lower-order porous 
system. This class of instabilities has received much emphasis. Although the 
sequence of transitions has been fairly accurately determined as a function of the 
control parameter, the driving mechanism of the phenomenon remains unclear. This 
problem will be treated through a truncated model here. Some important qualitative 
aspects of the mechanism can be explored. These aspects are rather difficult to reveal 
from the full numerical simulations. 

From a somewhat different perspective, the mean-flow generation mechanism is of 
interest in the geophysical context. The possibility of a mean-flow driving mechanism 
through the temperature-dependent viscosity was suggested by Busse (1983). The 
search for a disturbance eigenmode associated with a mean component of vorticity 
that exhibits an exponential growth poses an interesting problem. For this reason we 
choose to examine the class of instabilities with a in phase shift relative to the basic 
solutions. The problem has been partly motivated by the observation of mean drift 
in the continents (Hager & O’Connell 1981). The data suggest, under the hypothesis 
of a convective mantle, that the mean flow requires a driving mechanism other than 
the Reynolds stresses. This is because the Earth’s mantle resembles an infinite- 
Prandtl-number fluid, and thus has vanishing Reynolds stresses. 

2. Formulation of the mathematical problem 
The configuration to be considered is an infinitely extended horizontal porous layer 

filled with fluid and heated from below. The layer has a thickness d and is bounded 
by two parallel plates which are kept at fixed temperatures. Density and viscosity of 
the fluid exhibit a linear dependence on the temperature, 

(2 . la )  

(2.16) 

where T, refers to  the median of the temperatures TI,  T, imposed at the boundaries. 
While p varies little throughout the porous layer in accordance with the Boussinesq 
approximation, the viscosity may vary by an order of magnitude or more. Using 
d ,  d 2 / K ,  and the positive temperature difference between the lower and upper plate, 
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T,-T,. as scales for length, time and temperature, respectively, we obtain the 
dimensionless Darcy-Boussinesq equations for convection in a porous layer 

- ( P ( ~ - B ) + l ) u + R k e - V x  = 0, (2.2a) 

v2e+u.k = a,e+u.ve, (2.2c) 

v * u  = 0, (2.2b) 

where u is the velocity averaged over the microscale of the porous medium and 8 
describes the deviation of the temperature from the static distribution. The unit 
vector in the direction opposite to gravity is denoted by k ,  and the dimensionless 
parameters /?, R are defined by 

3 (2.3a) 
yg(T, -T , )W R =  

POK 

P = P*(T,-T,). (2.3b) 

The thermal diffusivity K is defined as the thermal conductivity of the fluid-solid 
mixture divided by the specific heat and the density of the fluid. K is the Darcy 
permeability coefficient and g is the acceleration due to gravity. 

We shall use a Cartesian system of coordinates with the z-coordinate in the 
direction of k .  Since the analysis will be limited to two-dimensional flow, it is 
convenient to introduce the stream function $, 

u = v xj$(x ,  2 ,  t ) ,  

where j is the unit vector in the y-direction. After taking the y-component of the curl 
of (2.2a), the basic equations (2.2) can be replaced by 

( ~ ( 2 -  e) + 1) v2$ +pa,(% - e) a, $-pa, ea,$-Ra, B = 0, (2.4a) 

vw+ a, $+a, $a, e-a, +az 8 = a, e, (2.4b) 

Steady solutions of (2.4) can be obtained by expanding $, 8 in series of functions 
where a, indicates the partial derivative with respect to z.  

satisfying the boundary conitions 

$.=e=Q a t  z = g , - l  2' (2.5) 
Trigonometric functions are the obvious choice for both the x- and the z-directions. 
The symmetry of the problem permits solutions that have a symmetric temperature 
distribution with respect to the x-direction, 

m 

B = X B,,coslolxsinnn(z-+), 

$ = X A,,sinlaxsinnn(z-+). 

1 ,  n 
02 

1. n 

(2.6a) 

(2.6b) 

After inserting (2.6) into (2.4), multiplying (2.4a, 6) by 4sin kazsinmx(z-+) and 
4 cos kaxsin mx(z-+), respectively, and averaging the result over the fluid layer, 
the following system of algebraic equations is obtained : 



where ai,, is the Kronecker symbol and the convention of summation over subscripts 
occurring twice in any term is assumed. The following definitions have been used: 

2((m-n)-2-(n+m)-2)/x2 for odd m + n  

(0 for even m+n, 

2 ( ( m - n ) - 2 + ( n + m ) - 2 ) / ~ 2  for odd m+n 

d n m  = 

for even m + n, d n m  = 

(2.86) 

( 2 . 8 ~ )  

( (m+ n+ r)-l+ (m-n-r) - l -  (m +n--r)-l- (m-n+T)-l)/x odd m+ n+ T 

even rn + n + r ,  
enmr = { 

(2.8d) 

( -  (m+n+r)- l+ (rn-n--r)-l+ (m+n-r)-' - (m-n+r)-')/x odd m+ n + T 

even rn+n+r. 
'nmr = { 

12.8e) 
0 for k =k 0 

1 for k = 0. 
d(k) = 

Equation (2.7) can be solved by a Newton-Raphson iteration method once a 
truncation of the infinite system is introduced. As in earlier works on nonlinear 
convection (see, for example, Busse 1967) the truncation will be accomplished by 
neglecting all coefficients and equations with subscripts satisfying 

k + l  > NT. (2.9) 

The truncation parameter NT is chosen such that properties like the convective heat 
transport change by a few percent at most when NT is replaced by NT+2.  

The stability of the two-dimensional solutions for the convection rolls will be 
considered with respect to  a restricted class of disturbances. The problem of stability 
with respect to more general classes of disturbances has been considered by Straus 
& Schubert (1979) and Schubert & Straus (1979) in the case of constant viscosity. We 
shall restrict attention to  a particular class of disturbances. This class of disturbance 
is associated with the mechanism of mean-flow generation in a porous medium owing 
to temperature-dependent viscosity. 

The equations for infinitesimal two-dimensional disturbances $, 8 of the steady 
solutions $, 8 can be written in the form 

(~(2- e) + 1) vzfi-,q6v2+aa, (z- e) a, fi  +a, 6az $+a, ea, J + a, 6ax $1 -m, 8 = 0, 
(2.10a) 

vzB+ a, &+a, $a, 6+a, J a ,  e- a, $a, &a, $a, e = d, (2.10b) 

where a time dependence of the form exp(crt) has been assumed for the disturbances. 
Equations (2.10) admit, among others, solutions 8 which are symmetric or 
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antisymmetric in x.  Here we focus the attention on the latter kind and use the 
representation 

* "  0 0 -  

0 = 0 exp vt = C Bzn sin lux sin nz(z - t )  exp a d ,  (2 .11~)  
1 ,  n 

0 0 -  1 3 = (&-JU(z)dz)expvt = C A,,cosZ~~sinnz(z-t)-JU(z)dz expvt. (2.11b) 

In  contrast to the steady solution, the disturbance may involve a mean flow which 
has been separated in (2.1 1 b )  because the boundary conditions for 3 at x = - t ,  
apply only for the fluctuating component. By returning to the original equations 
(2.2) a simple expression can be obtained for the mean flow in the x-direction, 

[z, n 

where the bar indicates the horizontal average. The equations for the coefficients 
apn ,Bpn  are derived from (2.10) in the same way as the corresponding equation in the 
steady case, 

where Rmg = fsinsn(z-t)eosmx(x-t)sinpn(x-t) (1 +P(z-$))-ldz 
e 

Kmg = ~sinan(x-!j)sinmn(x-~)sin~n(x-~) (l+p(x-@)-ldz 

has been used. 

3. Finite-amplitude steady states 
For R > R,, there exists a pair of a-values on the neutral curve. It is thus not 

surprising that the bimodal interaction can occur. Such interaction can give rise to 
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Mode Porous Free-slip Rigid 

2 0.707 0.698 0.695 
1.125 1.170 1.185 

3 0.577 0.559 0.553 
1.333 1.467 1.508 

4 0.500 0.475 0.468 
1.563 1.810 . 1.887 

5 0.447 0.418 0.410 
1.800 2.184 2.300 

6 0.408 0.375 0.367 
2.042 2.581 2.738 

TABLE 1. The degenerate points on the neutral curve, see (3.1) 

- 

- 1  - 

FIGURE 1 (a ,  b ) .  For caption see facing page. 
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FIGURE 1. Bifurcation diagram for the modal coefficients showing the bimodal interaction of 
wavenumbers a and 2cr for R = 60 and (a )  /3 = 0, (b )  /3 = 1.0. ( e )  The coefficients in ( a )  and ( b )  are 
shown as functions of R with a = 2.0. 

a new class of mixed modes which is often overlooked. Since Segel (1962) studied 
some of these mixed modes, such solutions have gained little attention by 
investigators. Most of the analytical studies in the convective systems have made use 
of the symmetry of the layer in order to simplify the mathematics. Thus the mixed- 
mode solutions are often forced out of the numerical scheme. However, once the 
symmetry of the layer is broken by a certain means, for example, in our case, by the 
temperature-dependent viscosity, the mixed modes become indistinguishable from 
the primary mode on the basis of the symmetry properties. One of these ‘mixed 
modes ’ could eventually interchange role with the primary mode and becomes the 
preferred solution, if the asymmetries introduced are sufficiently strong. Thus it 
becomes important to identify the mixed modes and understand their bifurcation 
properties. The general stability dependence of these mixed modes on the viscosity 
gradient is of interest by itself. However, owing to our restricted stability analysis, 
this aspect is beyond the scope of the present study. 

It is shown in Busse & Or (1986) that the bimodal interaction can exist for a pair 
of non-commensurate U-values. Of more physical interest, however, is that the two 
interacting wavenumbers are integrally related. In  the (a,  &)-plane, the sequence of 
degenerate points on the neutral curve, (uj ,  Ri),j 2 2, are determined by 

(3.1) 

the bimodal interaction between the two modes with wavenumbers a, andja j  occurs 
above the degenerate point (aj,R,). Table 1 shows a comparison of these points on the 
neutral curve for three convective systems : a fluid-saturated porous medium, an 
ordinary fluid with the free-slip boundary conditions, and with the rigid boundary 
condition. For the j t h  mode, the upper and lower figures correspond respectively to 
ujluc and R,/R,. We notice that for a given j, the point in the case of the porous 
medium corresponds to the smallest R,IR, and the largest aJa, ratio. The two cases 
corresponding to j = 2 , 3  are of particular interest. Their domain of existence occurs 

R, = R(aj) = R(jaj). 
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FIUURE 2. (a) Bifurcation diagram for the model coefficients showing the bimodal interaction of 
wavenumbers a and 3a for R = 120 and /3 = 0. ( b )  The coefficients in (a )  are shown as functions of 
R with a = 1.5. 
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closer to the critical onset and extends to overlap the stable band of the primary 
mode. The bifurcation structure of these two cases will be described below. The 
bifurcation curves are computed numerically with a truncation number NT = 8. In 
any case the Nusselt number for NT = 8 and NT = 10 differed by less than 2 YO. 

The bimodal interaction for the a and the 2a modes is shown in figure 1. The solid 
and dashed curves correspond to the leading vorticity coefficients A,, and A,, 
respectively. Figure 1 (a) shows the case for p = 0 and R = 1.52R,. The band width 
between the points a and d tends to zero at 12 = 1.126Bc. Without loss of generality, 
A,, > 0 is assumed, which represents a downflow a t  z = 0. The case A,, < 0 
represents the same physical solution shifted by a distance of nu in 2-direction. The 
amplitude of the primary mode is represented by the curves ac'e and bd'e. Note that 
the curve bd'e is the continuation of the curve ac'e over the right band where 01 > 7c. 

This representation beaomes apparent if we notice that (2.6b) can be rewritten as 

The domain of existence of the mixed mode is bounded by the harmonic and the 
subharmonic bifurcation points c' and d' respectively. At these points the pitchfork 
curves cd' and dc' emerge from the primary curve. In the literature, the dotted curves 
are normally represented in an orthogonal plane to the paper. Here A,, and A,, are 
represented on the same plane far convenience. Obviously, the mixed modes do not 
possess the symmetry property that corresponds to the vanishing I + n coefficients in 
the basic solutions. From ( Z d b ) ,  it can be shown thattt, assuming A,, > 0, the two 
cases A,, > 0 and A,, f 0 correspond respectively to fast downflow, slow upflow and 
vice versa. It is of interest to notice that one of theee two patterns is compatible with 
the basic pattern modified by the presence of the vorticity gradient. 

Figure 1 ( b )  shows the case for /3 = 1. No symmetry corresponding to even or odd 
I -I- n is present anymore. Physically, the temperature-dependent viscosity is known 
to enhanca the hot upflow jet and weaken the cold downflow jet. Thus the primary 
solution for A,, > 0 is associated with A,, < 0. The latter coefficient appears as the 
nearly horizontal dashed curve gf' below the a-axis. The dashed curves adk,gf'di 
resemble an imperfect pitchfork bifurcation that is typical from the classical theory. 
Compared with figure l (a ) ,  it is of interest to notice the disappearanoe of the 
harmonic bifurcation point c and the appearance of the turning point f. The 
subharmonic point d is split into two distinct points, d, and d,. Thia splitting is 
necessary since the layer is no longer symmetrical with respect to the midplane. In 
view of this asymmetry the two subharmonic eigenmodea cannot be physically 
identical. 

Figure 1 (c )  ahows the bifuraation diagram for a = 2.0 and R as the abscissa. The 
heavy and thin curve8 represent the cases f3 = 1 and a =  0 respectively. The bimodal 
interaction for the a and 3a modes is shown in figure 2. Of particular interest is the 
case /3 = 0. Unlike the previous case, now both the mixed modes and the primary 
mode have vanishing odd 13- n coefficients, and thus they cannot be distinguished 
based on the symmetry properties alone. This non-uniqueness of solutions with the 
symmetry preserved occurs for R > R,. In figure 2, the heavy solid and dashed curves 
represent A,, and A,, respectively. In figure 2 (a) the points d ,  d' and d" correspond 
to a simple degenerate subharmonic bifurcation. The horizontal band between the 
fold f and the subharmonic point d contains three solutions having the same 
symmetry properties. The primary mode is identified by the smallest A3,/All ratio. 
It is instructive to  compare figure 2 ( a )  and figure 1 ( 6 ) .  The bifurcation structures for 
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the two cases are similar generically. I n  both cases, the dotted curves resemble the 
imperfect pitchfork. In  figure 2 (a ) ,  however, since the primary mode preserves the 
midplane reflection symmetry of the layer, there exists one degenerate subharmonic 
point instead of two distinct subharmonic points. In  figure 2 (a ) ,  the thin solid curves 
represent Nu - 1 ,  where Nu is the Nusselt number. The primary mode has the largest 
Nu among the three. Figure 2 ( b )  shows the bifurcation curves of A,, and A,, versus 
R, for a = 1.5. The similarity between figure 2 ( b )  and figure 1 (c) is also apparent. 

4. The oscillatory instabilities 
The oscillatory motion in porous rolls has been fairly well documented. Combarnous 

& Le Fur observed the two-dimensional oscillatory modes experimentally using a 
Hele-Shaw cell. Moore & Weiss (1973) suggested that these oscillations are caused by 
a resonance mechanism, which they referred to  as the ‘cyclic-triggering ’. In  effect the 
disturbances are generated by the periodic boost they receive from their predecessors 
that have circulated around the convection rolls. Horne & O’Sullivan (1974) studied 
porous convection rolls numerically and have provided a comparison of their result 
with the earlier experiment. Horne & O’Sullivan (1978) further modified the problem 
so that the upper boundary condition is kept a t  a constant pressure, thus the flow is 
unconfined. This arrangement minimizes the fluctuating pressure required for 
producing the triggering. Horne and coworkers observed similar oscillatory 
behaviour in the modified apparatus and thus argued that the oscillatory modes 
cannot be caused by the cyclic triggering. The studies by Horne & O’Sullivan 
appeared to favour the theory proposed by Foster (1971), who suggested that the 
oscillatory instabilities are caused by the thermal-boundary-layer breakdown. 

Much emphasis has also been put on the accurate numerical determination of the 
transition parameters in the various stability domains. The work of Schubert & 
Straus (1979, 1982), and Kimura et al. (1986) furnish a comprehensive study on the 
sequence of motions for a wide range of the controlling parameter. Such a sequence 
is typical in leading to the transition to chaos. More recently, Aidun & Steen (1987) 
and Steen & Aidun (1988) studied the numerical convection problem with improved 
resolution with a square truncation scheme. The results not only provide additional 
resolution on the transition parameters documented earlier, but also clarify some 
subtle roles played by the thermal boundary layers and the pressure gradient in the 
transition mechanism, The results also give some important descriptions of the 
oscillatory mechanism. 

In  this section, we examine the oscillatory mode from a different perspective. We 
consider the instability class that has the same phase as the translational neutral 
disturbance of the basic state, rather than the in-phase instability class previously 
considered. Our result is important in indicating whether such phase dependence is 
important in the transition mechanism. Since 01 is a prescribed parameter in our 
infinite-periodic rolls, our result also includes the varying of a from its critical value 
n. On the other hand, our numerical formulation does not enable us to work in the 
high-resolution regime. Our truncation number NT is limited to 10. Besides 
determining the transition parameter for the instabilities, our emphasis is also on a 
simple truncated model which only retains the leading coefficients. The model gives 
the oscillatory instabilities via a Hopf bifurcation. The result provides some physical 
insight into the transition mechanism that is otherwise difficult to  obtain. It is 
warned, however, that  any comparison between our result and the exact result has 
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R x  10 

1 2 3 
a 

FIGURE 3. The stability diagram showing the stability boundaries of the two oscillatory 
instabilities (heavy lines) and the mixed-mode instabilities (thin lines) for p = 0. 

to be exercised with caution, since the model suggests qualitative, rather than 
quantitative features. 

For p = 0, figure 3 shows the stability boundaries for the first two oscillatory 
eigenmodes. A third unstable mode has not been observed in the proximity of the 
stability diagram. Both the disturbances and the basic state are a t  the same 
wavenumber. The solid curves A and B are computed with NT = 10 and the dashed 
curves A’ and B ,  A” and B” are computed with NT = 8 and NT = 6 respectively. For 
NT < 6 no growing oscillatory mode can be found. Despite the large discrepancy 
between the cases NT = 8 and NT = 6, agreement between the cases NT = 8 and 
NT = 10 is much better. Since the basic state has vanishing odd I + n coefficients, the 
disturbance eigenmodes separate into two distinct even 1 + n and odd 1 + n classes. 
We refer to them as the even and the odd mode. Both modes are oscillatory. The even 
and the odd mode’s stability boundaries are denoted by curves A and B respectively. 
For the lower NT, the odd mode’s boundary occurs a t  higher R than the even mode’s. 
This is because we have used an even NT in truncating the basic and the disturbance 
solutions in the computation, thus the odd mode suffers a more severe truncation 
error. For u = x and NT = 10, the condition R e v  = 0 for the even and the odd 
oscillatory mode occurs at R = 383 and 359 respectively, where the corresponding 
values for I m a  are respectively 528 and 443. For comparison, the corresponding 
exact values for the onset of the in-phase oscillatory mode reported by Aidun & Steen 
(1987) are R = 391 and I m a  = 521. I n  figure 3, the stability boundaries cannot be 
computed for CL less than a value somewhere between 1.3 and 1.4 where, as indicated 
from figure 2 (a ) ,  a turning point f occurs in the basic state. To see if the oscillatory 
instabilities exist to the left of the foldf, we perturb the basic state from the left 
branch of the neutral curve. In  this case no unstable oscillatory eigenmodes are 
found. As we increase R, a steady unstable eigenmode first occurs when R exceeds R,. 

17 FLM 206 



508 A .  C. Or 

“2 : 

0 1 2 3 4 5 6 7 8 9  
I 

0 1 2  3 4 5 6 7 8 9 10 

FIGURE 4. (a) The distribution of the normalized amplitude coefficients of the Fourier modes of 
(a) the odd and ( b )  oscillatory modes of instability with respect to L and 1. 

I 

A second steady unstable eigenmode occurs when R exceeds R,, and so on. As c1. 
increases away from the neutral-curve value, u decreases and passes through zero 
where the pitchfork bifurcation to the mixed modes occurs. The loci for these 
bifurcation points correspond to  the stability boundaries shown as the thin dashed 
lines in figure 3. 

The amplitude-cocfficient distribution of the oscillatory instability eigenvectors is 
substantially different from that of the basic state. To see this, we plot the scaled 
magnitude of the Fourier coefficients of the vorticity, &,I, of the two unstable 
eigenmodes. Figures 4(a) and 4 ( b )  show respectively the odd and even unstable 
oscillatory modal distributions. The dotted and solid lines represent the cases NT = 
8 and 10 respectively. Each line is associated with an integer L whose value is marked 
along each solid line, and connects the Fourier modes such that the sum of the indices 
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l+n = L. The abscissa is the index 1. It is observed that dominant Fourier modes 
have L = NT-2 in the even mode and L = NT -3 in the odd mode. For the larger 
NT (the solid lines), the Fourier modes connected by the lines with L = NT (even 
mode) and L = NT-  1 (odd mode) are more evenly distributed, while the Fourier 
modes connected by the lines with L = NT-2 (even mode) and L = NT-3 (odd 
mode) possess sharper peaks. For the odd mode, figure 4 (a )  shows that lk451 and lA541 
dominate. For the even mode, figure 4(b) shows that lk4J and 1.1”J dominate. The 
contrast is expected to  be even more pronounced when the energy, or the square of 
the amplitude, is plotted instead. In  our truncated model, only the modes connected 
by the line possessing the peak are considered. Steen & Aidun (1988) have also 
tabulated the leading coefficients of the unstable eigenmode (see their table 2). In  
their distribution, the same trend has been observed. However, since the 
representative functions used in their expansions are somewhat different from the 
ones used here, the dominant coefficients cannot be compared directly. I n  contrast 
to the unstable eigenmodes, the distribution of the leading coefficients of the basic 
state where the eignmodes are derived is substantially different. The leading 
coefficients in the basic state in descending magnitude are: A,, = 16.2,A8, = 2.49, 
A,,  = 1.7,A1, = 1.1. Other coefficients are considerably smaller. It is clear that the 
steady state has its energy concentrated in the lowest few modes. It is very likely 
that the oscillatory instability is to  provide a means of transferring the energy to  the 
smaller scales. 

I n  the following, we construct a truncated model which can allow us to  gain some 
insight into the mechanism. The model has a basic state which consists of the 
fundamental mode A,, and the mean temperature distortion coefficients, B,,, for 
even k. The scheme is not a small-amplitude expansion about the critical onset. The 
values of the coefficients used in the model are obtained from the exact numerical 
solution. The basic state is perturbed by the disturbances consisting of the Fourier 
modes whose coefficients satisfy Z+n = L. We essentially drop coefficients of 
secondary importance to  the oscillatory mechanism, and force a low-dimensional 
eigenvalue problem that approximates the original one. The truncated heat equation 
in our model becomes 

HtjBL-i,i = 0, i,j = 1,2, ... L- 1 ,  (4.1~) 

where Hkk = c T + a Z - k , k + ( L - I c ) a r , _ k ( - l - k x ~ , , , k )  

and 

where k varies from 1 to L-1 for H k ,  and from 1 t.0 L - 2  for the subdiagonal 
elements. All other matrix elements of H ,  vanish. In obtaining ( 4 . 1 ~ )  the linear 
vorticity equation A,, = -r lnBln (4.lb) 

has been used, where A = A,,, a& = (n2x2+Z2a2), and R = xR,. The porous and the 
ordinary convection rolls are different in the values of R,, a, and r ln.  For the porous 
rolls, we have 

41xx 
n + 1 2  

, a, = x, R, = 4x2, thus rln = 7 a t  a = a,. R --, r l n = -  
4 1  laR 

a;n 
0 - a2 
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For ordinary convection rolls, we have 

2 7 1 7 ~ ~  
1/2(2n2 + 1 2 ) ,  

thus r ln = a t  a = a,. 

The diagonal elements H,, correspond to the linear terms in the heat equation with 
a modified mean temperature profile. The subdiagonal elements represent the leading 
nonlinear effect of the temperature advection. I n  this model, the growth rate, Re G, 
depends only on the diagonal elements. The term in H,, represents the 
thermal diffusion effect that  tends to  smooth out the disturbance. This effect is 
counteracted by the vertical advection of the disturbance temperature along the 
modified thermal gradient. It is observed from the steady-state solutions that all the 
mean coefficients R,,,, have the same sign. Thus the gradient in the interior of the 
layer is flat while the gradient near the boundaries is steep. Noticeably, the value of 
the coefficient B,, becomes saturated near l /a  for large R. Notice that &,,I cannot 
increase indefinitely since the modified gradient is not expected to locally reverse 
sign. Prom (4.la) we observe that in the regime where the oscillatory modes are 
excited (about 10-15 times above the critical onset), the coefficients ROk are only 
effective in stablizing the single-roll disturbance (n = 1). The multi-roll disturbances 
(n  2 2) can be excited by the static temperature gradient since BOk 4 B,, for k: 2 4, 
which implies that the stabilizing effect due to the mean-profile distortion from these 
disturbances is relatively weak. With the truncated model, we show that the 
oscillatory instabilities are instabilities caused by the effect of the static thermal 
gradient. For the porous rolls, this effect operates in the range of R where the 
transition has been observed. But for the ordinary convection rolls, this effect 
corresponds to much higher R. This effect is obviously consistent with the idea that 
the thermal-boundary-layer breakdown triggers the oscillatory mtions. It should be 
remarked that the asymptotic theory of an unstable thermal boundary layer yields 
a much higher R than the range addressed here (see Busse 1978). In  fact, in ordinary 
convection, Krishnamurti ( 1970) observed experimentally that the oscillatory 
behaviour operates at considerable lower R than that given by the asymptotic 
expression. In order to explain why the transition to the multi-roll instability takes 
the oscillatory route, we observe that there exists a restoring mechanism as seen 
through the signs of the subdiagonal elements of H i j .  Coupling by the basic rolls, the 
disturbance Fourier modes operate as a pair. As soon as one dominant mode grows, 
it also transfers energy to the other mode. As it decays, the other mode transfers 
energy back to it. 

To illustrate the model, let us consider the case L = 7 and L = 8, where the 
interaction is between the pair of most dominant Fourier modes. From figure 4 such 
a pair of modes is in the form of BL.-3,3 and 8L+l,j+l, where j = 2 for L = 7 and 
j = 3 for L = 8 respectively. From tjhe steady state for R = 4 0 0 , ~  = 7c and NT = 10, 
we have A = 16.2, B,, = -0.34, B,, = -0.088, B,, = -0.026, B,, = -0.0077, and 
B,,, = -0.0030. These values are not sensitive to R in the proximity of the stability 
boundary, and are used in (4.1). The following quadratic equation in r~ is obtained: 

rTZ+&G+S = 0, (4.2) 



Substituting the steady-state values into the above equation, we observe that 
S > 0 and the term involving the amplitude A is about an order of magnitude larger 
than the first product term. The neutral stability, Re a = 0, is determined from 

Q = 0. (4.3) 

The last condition enables us to determine x,, the critical onset ratio RIR, at the 
stability boundary. In turn, I m a  can be determined by substituting xc into the 
expression for S. The results we obtain are : (i) xc = 15.5, JIm CTI = 255 for the odd 
mode, where L = 7 ;  and (ii) xc = 16.3, IImaI = 300.1 for the even mode, where 
L = 8. The onset values of R and frequency of the oscillation in this simple model are 
respectively factors of approximately 1.5 and 1.75 of the exact values. Apart from the 
shift in values, however, the simple model predicts the trend and the interaction 
mechanism. It is of interest to observe that the xc for the odd mode is much closer 
to the exact value if the stabilizing effect of the mean gradient distortion is 
completely ignored. In  this case we have xc equal to 9.0, or R = 359.2. 
Correspondingly, the xc for the even mode is about 13.3, which is still considerably 
higher than the exact value. 

The question remains why the oscillatory modes are not observed in the ordinary 
convection rolls. Consider the condition (4.3) for the ordinary rolls. Ignore the 
stabilizing mean-gradient distortion effect. The condition, which we shall not go into 
in detail, gives a xc a t  least 3 times as high as the porous rolls. Since R, of the ordinary 
rolls is about 16 times that of the porous rolls, we thus expect an R onset value of 
oscillatory motion a t  least on the order of 104-105. Such value of R is seldom 
reachable through a modestly truncated numerical scheme. 

More insight can also be gained by studying the neutral curves a t  01,. The R/R,- 
value at 01 = a, is given by 

I (n2 + 12)2  
412 

( 2n2 + Z2)3 
2712 

for the porous rolls, 

for the ordinary rolls, 
(4.4) 

where n, 1 are the indices of z and x respectively. The lowest few modes for each case 
are plotted in figure 5. The solid lines connect the porous modes and the dotted lines 
connect the ordinary modes. Each ascending line corresponds to an increasing 
integer of n that starts from n = 1 .  The abscissa represents the index 1. Except for 
n = 1,  every line exhibits a minimum a t  a certain 1. The lines for the porous rolls are 
relatively flat for larger 1 ;  while the lines for the ordinary rolls are much steeper for 
larger 1. The ordinate value for the ordinary rolls increases rapidly between n = 2 and 
n = 3 and thereafter ; while such value appears to increase much slower with n for the 
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1 2 3 4 5 6 7 8 
I 

FIGURE 5 .  The RIR, ratio of the family of neutral curves a t  a, for various n as functions of 1. The 
solid and dotted lines connect respectively the modes of the porous and ordinary convection rolls. 

/3 CT (odd mode) u (even mode) 

0 (-6.16,299.52) (3.46, 376.54) 
0.5 (-15.62, 316.40) (14.75, 364.26) 
1.0 (-59.36, 353.20) (71.37, 361.43) 

TABLE 2. The variation of u for the even- and odd-mode oscillatory instabilities with B 
(Note : Im u has both signs) 

porous rolls. From figure 5, i t  is apparent why the oscillatory modes occur in the 
lower-order porous system but not the ordinary convection system. 

To see how the growth rate and frequency of the oscillatory modes are affected 
by /3, we compute CT as a function of p. The steady state is perturbed a t  R = 360, 
01 = n, and NT = 8. Table 2 shows that the odd mode is stabilized while the even 
mode is destabilized as /3 increases. 

5. The non-oscillatory instabilities of the mixed solutions 
For /3 = 0, the oscillatory and the Eckhaus modes are the only two-dimensional 

instabilities that the primary steady-state solutions exhibit. The Eckhaus mode 
requires a wavenumber modulation and has not been captured here. We have 
followed the eigenmodes to see if any such mode could be destabilized by a non- 
vanishing j3. From our formulation, i t  is observed that such a case will give the mean- 
flow instability. Unfortunately, our result does not show such a mode for R as high 
as 25 times above the critical onset. 

To look for a possible mean-flow-generating instability, the remaining possibility 
lies in perturbing the mixed modes. For /3 = 0, each of these modes is associated with 
a growing non-oscillatory eigenmode of disturbance. There is no mean-flow term 
generated for j3 = 0 since the vorticity equation is linear. I n  this case the instability 
appears trivially, to shift the mixed mode back to the primary mode. However, when 
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solution P A,,  A,, Nu U 

I 0 1.05 1.39 1.35 (0.169,O) 
1.0 1.74 1.16 1.49 (3.54,O) 

I1 0 1.049 -1.39 1.35 (0.169,O) 
1.0 1.10 -1.69 1.48 (-1.197,O) 

TABLE 3. Showing the dependence of the major coefficients, Nu, and u of the two 
mirror-symmetric mixed modes on P 

0.4 

0.2 

2 

0 

-0.2 

-0.4 

0 0.5 1 .o 
Qz) 

FIGURE 6. The normalized disturbance mean-flow profiles generates by the instabilities of the 
two mixed modes corresponding to the a and 201 bimodal interaction. 

/3 =I= 0, the mixed mode becomes unstable to a in phase-shifted disturbance that 
carries a mean component of O(,f?). Owing to this mean component, the instability 
cannot just shift the mixed mode back to the primary mode. It thus suggests the 
presence of a new steady-state equilibrium that possesses a mean shear. 

As an actual example, the instability on the mixed modes resulting from the 
bimodal interaction of wavenumbers a and 201 is shown in table 3. In  this case we 
have R = 60 and a = 2.55. At /3 = 0, the two modes (A,,, A,, < 0 and A,, > 0) have 
the same cr. Notice that Imcr = 0. At ,8 = 1, the mode with A,,  > 0 is destabilized 
while the other mode is stabilized. It is of interest to show the mean velocity of the 
unstable eigenmodes of these two mixed modes. Figure 6 show the normalized 
velocity. The two profiles are very similar. The velocity is stronger towards the lower 
half of the layer where the fluid is less viscous. The profile with slightly weaker 
velocity corresponds to the mixed mode with A,,  < 0. 
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6. Discussion and concluding remarks 
The existence of a hierarchy of oscillatory instabilities in the convection rolls of a 

fluid-saturated porous medium offers an excellent opportunity for the study of the 
transition to chaos in actual fluid systems. Considerable progress has bccn 
demonstrated by the work of Kimura et al. (1986). The route to chaos through 
preserving the two-dimensionality is particularly attractive to numerical analysts 
since it requires relatively small computational resources. Examples that offer such 
an attractive feature are quite rare in real fluid systems. However, it is worth 
remarking that there are other means to preserve the two-dimensionality, apart from 
using the large-aspect-ratio geometry in the Hele-Shaw apparatus. In a thermal 
Rossby wave, the two-dimensionality is constrained instead by the rapid rotation. 
Or &, Busse (1987) also observe numerically the transition to chaos through a period- 
doubling sequence. The transition does not have the symmetry properties of the 
Hopf bifurcations since the frequency is non-vanishing in the basic state of the wave. 

I n  in-phase oscillatory instabilities investigated by previous authors and the 
phase-shifted oscillatory instabilities in the infinite extent investigated here are 
physically distinct. It is thus natural to expect a difference in the transition 
parameters. The comparison of the parameters with previous work in 94, however, 
shows that this difference is quite small in R. It appears reasonable to infer that thc 
in-phase modes and the phase-shifted modes are operated by a similar mechanism. 
Furthermore, in our case, the distinction between the odd mode (I; = 7 )  and the even 
mode (L  = 8) appears to  be caused by the symmetry introduced by the flow-field 
representation functions, since the two modes are so close that it would be reasonable 
to expect that their difference diminishes if the symmetry in the basic rolls is 
removed. This view seems consistent with the result that an increase of /3 draws the 
stability boundaries closer together. 

The existence of the finite-amplitude solution which carries a mean velocity of O(p)  
is of interest for future work. Such a solution and its stability is of geophysical 
significance. The problem, however, requires a more general formulation of both the 
steady-state solver and the stability analysis that can relax the reflection symmetry 
of the rolls. It could be an interesting area of study for further work. 

The author wants to  thank Professor F. H. Busse, who formulated the original 
problem and provided many helpful discussions for this problem. I am also indebted 
to Professor P. S. Marcus, who provided many helpful discussions and supported this 
work through a grant from National Science Foundation (AST-8796285), and a grant 
from Lawrence Livermore Laboratory. The computation was mainly done in the 
Center for Astrophysics, Harvard University. 
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